大学物理(二)第六章公式总结

1天前 (01-30 13:23)阅读1回复0
kanwenda
kanwenda
  • 管理员
  • 注册排名1
  • 经验值126565
  • 级别管理员
  • 主题25313
  • 回复0
楼主

哎...智商不敷用...

詹卫伸教师的PPT看不懂...

知乎总结一下公式仍是死记硬背吧...

不能不说Latex实好用

符号规定: vv 指的物量的量, nn 指 n=NVn=\frac{N}{V} ,单元体积分子数。pV=vRTpV=vRT p=23nξk¯=nkTp=\frac{2}{3}n\bar{\xi_k}=nkT ξt¯=32kT=12m0v2\bar{\xi_t}=\frac{3}{2}kT=\frac{1}{2}m_0v^2 (分子平动动能)v2¯=3kTm0v2¯=3kTm0\bar{v^2}=\frac{3kT}{m_0}\电话uad\sqrt{\bar{v^2}}=\sqrt{\frac{3kT}{m_0}} 能量均分定律: ξtx¯=ξty¯=ξtz¯=12kT\bar{\xi_{tx}}=\bar{\xi_{ty}}=\bar{\xi_{tz}}=\frac{1}{2}kT 气体的均匀动能 ξk¯=i2kT\bar{\xi_k}=\frac{i}{2}kT ,单原子气体分子 i=3i=3 ,双原子气体分子 i=5i=5 ,多原子非线性气体分子 i=6i=6 热力学第必然律: dE=dA′+dQdE=dA+dQ dA=pdVdA=pdV , A=∫V1V2p(V)dVA=\int_{V_1}^{V_2}p(V)dV 常常将热力学第必然律暗示为 dQ=dE+dAdQ=dE+dA , dAdA 是系统对外界所做的功。抱负气系统统的内能 E=Nξk¯=Ni2kT=i2vRTE=N\bar{\xi_k}=N\frac{i}{2}kT=\frac{i}{2}vRT cx¯=QxΔTcx,m¯=1mQxΔTCx,m¯=1vQxΔT\bar{c_x}=\frac{Q_x}{\Delta T}\电话uad\bar{c_{x,m}}=\frac{1}{m}\frac{Q_x}{\Delta T}\电话uad\bar{C_{x,m}}=\frac{1}{v}\frac{Q_x}{\Delta T} cx=limΔT→0QxΔT=limΔT→0ΔAx+ΔEΔT=dQdT=dAxdT+dEdTcx,m=limΔT→0QxmΔT=limΔT→0ΔAx+ΔEmΔT=dQmdT=dAxmdT+dEmdTCx,m=limΔT→0QxvΔT=limΔT→0ΔAx+ΔEvΔT=dQdT=dAxvdT+dEvdTc_x=\lim_{\Delta T \rightarrow 0}{\frac{Q_x}{\Delta T}}=\lim_{\Delta T \rightarrow 0}{\frac{\Delta A_x+\Delta E}{\Delta T}}=\frac{dQ}{dT}=\frac{dA_x}{dT}+\frac{dE}{dT}\\c_{x,m}=\lim_{\Delta T \rightarrow 0}{\frac{Q_x}{m\Delta T}}=\lim_{\Delta T \rightarrow 0}{\frac{\Delta A_x+\Delta E}{m\Delta T}}=\frac{dQ}{mdT}=\frac{dA_x}{mdT}+\frac{dE}{mdT}\\C_{x,m}=\lim_{\Delta T \rightarrow 0}{\frac{Q_x}{v\Delta T}}=\lim_{\Delta T \rightarrow 0}{\frac{\Delta A_x+\Delta E}{v\Delta T}}=\frac{dQ}{dT}=\frac{dA_x}{vdT}+\frac{dE}{vdT} CV,m=limΔT→0QxvΔT=limΔT→0ΔAV+ΔEvΔT=dQdT=dEvdT=i2vRdTvdT=i2RC_{V,m}=\lim_{\Delta T \rightarrow 0}{\frac{Q_x}{v\Delta T}}=\lim_{\Delta T \rightarrow 0}{\frac{\Delta A_V+\Delta E}{v\Delta T}}=\frac{dQ}{dT}=\frac{dE}{vdT}=\frac{\frac{i}{2}vRdT}{vdT}=\frac{i}{2}RCp,m=limΔT→0QxvΔT=limΔT→0ΔAp+ΔEvΔT=dQdT=dApvdT+dEvdTC_{p,m}=\lim_{\Delta T \rightarrow 0}{\frac{Q_x}{v\Delta T}}=\lim_{\Delta T \rightarrow 0}{\frac{\Delta A_p+\Delta E}{v\Delta T}}=\frac{dQ}{dT}=\frac{dA_p}{vdT}+\frac{dE}{vdT}

dAp=pdV=vRdTdE=Nξk¯=Ni2kdT=i2vRdTdA_p=pdV=vRdT\电话uad dE=N\bar{\xi_k}=N\frac{i}{2}kdT=\frac{i}{2}vRdT

dApvdT+dEvdT=R+i2R\frac{dA_p}{vdT}+\frac{dE}{vdT}=R+\frac{i}{2}R

Cp,m=(i2+1)R=R+CV,mC_{p,m}=(\frac{i}{2}+1)R=R+C_{V,m}

16. 比热容比 γ=Cp,mCV,m=i+2i\gamma=\frac{C_{p,m}}{C_{V,m}}=\frac{i+2}{i}

17. 用比热容比暗示定体摩尔热容和定压摩尔热容

CV,m=Rγ−1Cp,m=γγ−1RC_{V,m}=\frac{R}{\gamma-1}\电话uad C_{p,m}=\frac{\gamma}{\gamma-1}R

18. E=Nξk¯=Ni2kT=i2vRT=vCV,mTE=N\bar{\xi_k}=N\frac{i}{2}kT=\frac{i}{2}vRT=vC_{V,m}T

19. 抱负气体的准静行态等体过程:

a. 等体过程系统不合错误外做功,

dAV=0dA_V=0

b. 等体过程抱负气系统统由平衡态1 (p1,V0,T1)(p_1,V_0,T_1) 变革到平衡态2 (p2,V0,T2)(p_2,V_0,T_2) 系统吸收的热量为

QV=∫dQV=∫T1T2vCV,mdT=vCV,m(T2−T1)=E2−E1Q_V=\int dQ_V=\int_{T_1}^{T_2}vC_{V,m}dT=vC_{V,m}(T_2-T_1)=E_2-E_1

c.在等体过程中吸收的热量化为:

QV=vCV,m(T2−T1)=V0RCV,m(p2−p1)Q_V=vC_{V,m}(T_2-T_1)=\frac{V_0}{R}C_{V,m}(p_2-p_1)

d. 抱负气系统统在准静态等体过程的热容为

cV=dQVdT=vCV,m=i2vRc_V=\frac{dQ_V}{dT}=vC_{V,m}=\frac{i}{2}vR

20. 抱负气系统统的准静态等压过程:

a. 等压过程抱负气系统统由平衡态1 (p0,V1,T1)(p_0,V_1,T_1) 变革到平衡态2 (p0,V2,T2)(p_0,V_2,T_2) 系统所做的功为

Ap=∫dAp=∫T1T2vRdT=vR(T2−T1)A_p=\int dA_p=\int_{T_1}^{T_2}vRdT=vR(T_2-T_1)

b. 系统内能的增量为

ΔE=E2−E1=vCV,m(T2−T1)\Delta E=E_2-E_1=vC_{V,m}(T_2-T_1)

c. 系统吸收的热量为 Qp=∫dQp=∫T1T2vCp,mdT=vCp,m(T2−T1)=v(R+CV,m)(T2−T1)Q_p=\int dQ_p=\int_{T_1}^{T_2}vC_{p,m}dT=vC_{p,m}(T_2-T_1)=v(R+C_{V,m})(T_2-T_1)

d. 抱负气系统统在准静态等压过程的热容为

cV=dQpdT=vCp,m=i+22vRc_V=\frac{dQ_p}{dT}=vC_{p,m}=\frac{i+2}{2}vR

21. 抱负气系统统的准静态等温过程:

a. 等温过程系统内能稳定,等温过程抱负气系统统由平衡态1 (p1,V1,T0)(p_1,V_1,T_0) 变革到平衡态2 (p2,V2,T0)(p_2,V_2,T_0) 系统所做的功为 QT=AT=∫dAT=∫V1V2vRT0dVV=vRT0lnV2V1=p1V1lnV2V1=p2V2lnV2V1=p1V1lnp2p1=p2V2lnp2p1Q_T=A_T=\int dA_T=\int_{V_1}^{V_2}vRT_0\frac{dV}{V}=vRT_0ln\frac{V_2}{V_1}=p_1V_1ln\frac{V_2}{V_1}=p_2V_2ln\frac{V_2}{V_1}=p_1V_1ln\frac{p_2}{p_1}=p_2V_2ln\frac{p_2}{p_1}

22. 抱负气系统统的准静态绝热过程:

a. dQ=0dQ=0 , p1V1γ=p2V2γp_1V_1^\gamma=p_2V_2^\gamma , p1γ−1T1−γ=p2γ−1T2−γp_1^{\gamma-1}T_1^{-\gamma}=p_2^{\gamma-1}T_2^{-\gamma} , T1V1γ−1=T2V2γ−1T_1V_1^{\gamma-1}=T_2V_2^{\gamma-1}

b. 绝热线比等温线陡

p=p1(V1V)γp=p_1(\frac{V_1}{V})^{\gamma} , p=p1(TT1)γγ−1p=p_1(\frac{T}{T_1})^{\frac{\gamma}{\gamma-1}} , V=V1(T1T)1γ−1V=V_1(\frac{T_1}{T})^{\frac{1}{\gamma-1}}

c. 绝热过程抱负气系统统由平衡态1 (p1,V1,T1)(p_1,V_1,T_1) 变革到平衡态2 (p2,V2,T2)(p_2,V_2,T_2) 系统所做的功为

AQ=vCV,m(T1−T2)=vRγ−1(T1−T2)=1γ−1(p1V1−p2V2)A_Q=vC_{V,m}(T_1-T_2)=\frac{vR}{\gamma-1}(T_1-T_2)=\frac{1}{\gamma-1}(p_1V_1-p_2V_2)

d. 气系统统内能增量

ΔE=1γ−1(p1V1−p2V2)\Delta E=\frac{1}{\gamma-1}(p_1V_1-p_2V_2)

updating...

0
回帖

大学物理(二)第六章公式总结 期待您的回复!

取消
载入表情清单……
载入颜色清单……
插入网络图片

取消确定

图片上传中
编辑器信息
提示信息