四年级数学手抄报可以写什么?关于学生数学兴趣的培养技巧论文好写吗?
四年级数学手抄报可以写什么?
可以写一些数学家的小故事 :
1 .16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
2 .20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
3. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
4. 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
5 . 俄国诗人莱蒙托夫也是一个数学爱好者。在服兵役时,他出题给军官做一个数学游戏:
他让一个军官先想好一个数,不要告诉别人,然后在这个数上加25,心算好了以后,再加上125,然后再减去37。把算好的结果减去原来想的那个数,结果再乘5并除以2,最后,莱蒙托夫对那个军官说:答案是282.5。
关于学生数学兴趣的培养技巧论文好写吗?
这是比较好写的,关于学生的数学兴趣培养可以把它剖析为几个不同的方面。几个方面他侧重的技巧是不一样的,把这些嗯方面分析出来的话,然后侧重于每个方面的技巧再具体分析,这样的话就非常好写。
最近老师让写篇数学论文,难哪!希望各位好友帮帮?
我所看的这本书是由人民教育出版社2019年2月出版的《中学数学教学论》一书。 书中论述了中学数学课程目标、课程内容、中学数学学习过程、教学过程与 *** 、教学手段、教学组织、教学评价等诸多方面,对中学数学教师的教学有很大的指导意义。它有一个特点,就是本书的作者结合了现在的新课程标准以及新教材进行分析,做到理论与当今教材相结合,读后获益匪浅。
介绍了中学数学概念教学、计算教学、几何问题及其教学,尤其是其中关于计算教学的论述使我对中学数学中计算教学的理解提高了一个层次,书中谈到“计算更多的是一种内隐的心智活动”。下面我就结合书中的一些的观点并结合我在计算教学中的一些体验,谈谈我对计算教学的一个新的认识,即:应关注计算教学中思维能力的培养。
很多教师在计算教学中都喜欢采用操作的 *** ,本来结合操作让学生理解算理无可厚非。根据学生的思维特点,算法的建构离不开操作的直观感知来获取算理,但并不意味着有了操作就可以理解算理、建构算法。事实上动手操作所获取的只是对算理的直观感知,迫切需要教师通过有效引导来搭建平台,帮助学生进一步内化整理,以便沟通算理与算法之间的内在联系。也就是说:操作不能停留在对结果的追求和对算理的理解上,还应及时概括和提炼出算法。教师在学生操作之后引导学生用语言表述出操作过程,帮助学生实现“实物操作”向“算法操作”过度,让学生体验从直观到抽象的逐渐演变过程,逐步摆脱对操作的依赖,从而促使学生抽象思维能力的发展。把操作活动与知识教学紧密联系起来,帮助学生把抽象的思维外显为直观的操作活动,学生的思维由动作到半动作半表象,再到表象思维,最后到抽象思维,由易到难,循序渐进拾阶而上不断深入。
另外,课堂上让学生充分操作,在操作中充分理解算理,这就为抽象出算法储备了丰富的感性认识和感性经验,为算法建构提供了有力支撑。在此基础上,再展开分析、比较、综合、概括,将学生零散的经验和认识进行整理、汇聚,帮助学生将认识进一步明晰化、系统化,从而自然地促进算法的建构。
如果仅停留在操作层面,不能让学生在头脑中对获得的感性经验进行必要的重构,而让仍沉浸在直观形象算理中的学生运用抽象的算法进行计算,则欲速而不达,不利于算法建构。
书中提到:要用综合的思维方式对数的运算结构教学进行整体改革,即融口算、笔算、估算和简算为一体。我想,在教学此类知识时,在思维 *** 上,应该突破原有的单一凝固的某种算法前提下的教学格局,不是用简单的“加法”,而要用综合的 *** 来关注和处理单一打破后出现的复杂的多维变化的信息,通过价值判断和结构化的处理,形成有核心的丰富的统一。这才是融合以后形成的“多”与“一”的统一。新形成是的“一”不是“单一”,而是有“主”有“从”、有“层次”、是多方面的和谐统一。这种融合可以唤醒学生灵活判断与主动选择的自觉意识,意味着学生的思维有了更大的空间,是一个更深层次的灵活主动。这才是计算教学深层次的教育价值。
所以,这本书对我而言在教学方面非常有帮助,可以大大地提高我对中学数学新课程改革的认识,让我可以学到很多新理念,并尝试着运用课堂教学中,理论与实际相结合地去摸索经历,从而获得宝贵的教学经验和教学成果